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Context

Variance reduction techniques are used to improve the
efficiency of Monte Carlo methods for approximating
integrals. In this work we propose an adaptive stratified
sampling approach based on theoretical bounds of the
strata variances using the monotonicity property of the
function of interest.

Problem statement

Consider the problem of estimating

φ̄ = E(φ(X)) (1)

where
•φ : R+ → [0, 1]

•φ is continuous

•φ is monotonically increasing

•φ(0) = 0 and limx→∞ φ(x) = 1

• The CDF FX of X is known

Motivation

• In the field of microbiology, Quantitative Risk As-
sessment (QRA) models are used for estimating the
risk of a food borne disease

• QRA models include monotonically increasing func-
tions w.r.t the initial concentration of bacteria

• Given the cost of function evaluation the aim is to
reduce the sampling budget compared to the simple
Monte Carlo algorithm

How stratification works

Consider the N strata Si = [li, ui) for i = 1, 2, . . . , N
with:

• stratum probability ωi = P [X ∈ Si]
• stratum variance τ 2

i = Var(φ(X)|X ∈ Si)
Then the stratified sampling estimator can be written as

φ̂ST =

N∑
i=1

ωi
ni

ni∑
j=1

φ(Xi,j) (2)

and the variance of this estimator

Var(φ̂ST) =

N∑
i=1

ω2
i τ

2
i

ni
(3)

with

• stratum sample size ni
• stratum samples Xi,j, j = 1, 2, . . . , ni

The optimal choice for ni, with total budget
∑N

i=1 ni =
n, obtained by minizing the variance is

ni =
ωiτi∑N
i=1 ωiτi

n (4)

The variance of the stratified sampling estimator with
optimal allocation of sampling budget is

Var(φ̂ST
opt) =

1

n

( N∑
i=1

ωiτi

)2

(5)

Stratification vs Simple Monte
Carlo

• The simple Monte Carlo estimate is a special case
of the stratified sampling estimate with N = 1

• Both estimates are unbiased

• The variance of the Monte Carlo estimator can be
shown to be larger than Var(φ̂ST

opt)

Conservative approach

• The stratum variances τ 2
i are unknown

• We propose using upper bounds instead of pilot
sample estimates

Popoviciu’s inequality provides an upper bound on
the variance of bounded random variables

τ 2
n,i ≤

1

4
(φ(ui)− φ(li))

2 =
1

4
∆2
i (6)

• An upper bound of the optimal variance can be writ-
ten as

Var(φ̂ST
opt) ≤

1

4n

( N∑
i=1

ωi∆i

)2

=
κ2

n
(7)

• For fixed n, the upper bound κ2

n decreases as the
number of strata N increases

• It can be shown that a split in the i-th stratum with
any split proportion 0 < α =

ω1,i

ωi
< 1 and 0 < β =

∆1,i

∆i
< 1, reduces κ

ωi∆i > ω1,i∆1,i + (ωi − ω1,i)(∆i −∆1,i) (8)
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• Bounds on the expectation can be derived using the
monotonicity property of φ

φ̄ ≥
N∑
i=1

ωiφ(li) = φ−N

φ̄ ≤
N∑
i=1

ωiφ(ui) = φ+
N

(9)

• The upper and lower bounds for the expectation con-
verges as number of strata N increases
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Adaptive algorithm

• The idea is to split the stratum with maximum ωi∆i

value (the highest contribution to the variance upper
bound)

• A split which divides either ωi or ∆i into half, re-
sults in reducing the contribution of that particular
stratum also by half

• To obtain a split with α or β close to 0.5 we propose
the following strategy

k ← arg maxi(ωi∆i)
if k = N then

X(k) = 2X(k−1)
else

X(k) =
X(k−1)+X(k)

2

• For a fixed number of strata N the sampling bud-
get n can be obtained by fixing the upper bound of
coefficient of variation by δ

CV(φ̂ST) =

√
Var(φ̂ST)

φ
≤ κ√

nφ−N
≤ δ

=⇒ n = d κ2

(φ−N)2δ2
e

(10)

• The optimal strata sizes given by (4) (by substituting
∆i) might result in non integer values

• To ensure each stratum has at least one sample, we
recompute the budget as ncorr by taking the ceiling
value

ncorr =

N∑
i=1

ñi =

N∑
i=1

dnie ≥ n (11)

• The upper bound for variance with the corrected
sample size is smaller

N∑
i=1

ω2
i∆

2
i

ni
≥

N∑
i=1

ω2
i∆

2
i

ñi
(12)

• The actual budget of the algorithm is ncorr+ the ad-
ditional evaluations made in each strata for splitting
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Stopping rule: The algorithm stops splitting the strata
as the budget starts increasing

Experimental results

• The proposed method is implemented and compared
to simple Monte Carlo for estimating the risk in a
QRA model

• A simple Monte Carlo approach requires a budget
of 2503 samples to achieve a 10% CV

• The proposed stratified sampling approach requires
33 samples to achieve the same CV


