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Motivation & application

= Project ArtisaneFood: Control food-borne pathogens in artisanal fermented
foods for Mediterranean countries

= ArtiSaneFood France

— Product: Camembert de Normandie (fromage au lait cru)
— Pathogen: Shiga Toxin producing Escherichia coli (STEC)
— Disease: Haemolytic Uremic Syndrome (HUS)

= Microbiological Quantitative Risk Assessment (QRA)
= Study impact of intervention steps

— Preharvest intervention - Farm milk is tested

— Postharvest intervention - Cheese batches are tested
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Motivation & application
= Goal: Make methodological recommendations to French cheese producers
= Find optimal values of process intervention parameters

— f5°r: Frequency of milk testing (days)
— [%°"": Milk test threshold (CFU/ml)

— p'*st: Proportion of cheese batches tested

— nmPle: Number of cheese samples tested
= Objectives to minimize

— RHUS. Relative risk of HUS

— (C: Cost of intervention
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1 Quantitative Risk Assessment

= QRA simulator based on model proposed by Perrin et al. (2014)
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= Models the farm-to-fork continuum

— Farm module: Computes STEC concentration in farm milk
— Cheese module: Evolution of STEC is modelled using ODEs
— Consumer module: Computes risk averaging over consumer behaviour
= Outputs: risk of HUS (RP2th), milk loss (M/"2t1) and proportion of cheese
batches rejected (PPtch)
Quantities of interest (Qol):
RH[TS _ E[Rbatch . (1 _ Pbatch . ptest)]/(E[Pbatch . ptest] . K) (l)

C = E[]\/jbatch . (1111 1k + Pbatch . ptest . (:('11(‘(‘5(3_"_

milk / psort sample cheese test
test 1 +n s P

(2)

crille - pcheese memilk gng ¢fheese denotes costs of intervention steps

! ! 1(\1

K is baseline risk (no interventions)
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2 Multiobjective optimization

= We consider a biobjective optimization problem of f = (R"US ()

min_ f(z) (3)

zeXCR*
» Stochastic: We observe with additive noise Z(z) = f(z) +¢, e ~ N(0,X)
= Conflicting objectives: There is no unique optimal solution
= The solution set consists of Pareto optimal points

P={recX: M X, Z(2) < Z(z)} (4)

» Where Z(2') < Z(z) = Z;(2') < Z;(x),Vi, with at least one strict
inequality



9/25

Pareto optimal solutions: the objective space
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Pareto optimal solutions
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Pareto optimal solutions
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Pareto optimal solutions
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Problem formulation

= Optimize the function f = (RHUS,C)
—_ |nput space (fsort7 lsort7ptest)nsample) c X c R4

5ot € {10, 20, 30, 40, 50}
1=t € {10, 20, 30, 40, 50}
Pt € {0.1,0.2,0.3,0.4,0.5}
nsamPle ¢ 1510, 20, 30, 50}
— Objective space (RHVS, C) € R?
= The input space X is discrete and finite (625 points)

= We want to estimate the Pareto set P C X
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Naive solution: Brute force Monte Carlo

= Expensive: Heavy MC evaluated Vz € X, takes > 4 days!

True Pareto front
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= Each point is an estimated average over 5000 iterations

= Pareto optimal (green) and non Pareto optimal (red) points
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3 Stochastic Pareto Active Learning (PALS)

= Proposed by Zuluaga et al. (2013) and extended by Barracosa et al. (2021)
= Why PALS ?

— Easy to implement and inexpensive

— Does not have computationally-intensive criteria like other Bayesian
optimization algorithms (see, e.g., Hernandez-Lobato et al., 2016)

— Suitable for optimizing expensive and stochastic simulators
= PALS at a glance:

— Gaussian process (GP) model to construct a inexpensive surrogate
— Samples cleverly the points in X to evaluate

— Classifies points in X using confidence rectangles
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Surrogate modelling: Gaussian process regression

= For each of the Qols we consider the data generative model
Zj = &(x)) + ¢ (5)
where

— &£~ GP(m, k) and ¢; “Y N(0, 02), independent of &

— mean function m : R* > R, kernel k: R* x R* > R

= The parameters of m, k and noise variance are estimated using the method
of maximum likelihood

» Knowing m and k the posterior £|Z1, Za, . .., Z,, m, k can be computed by
solving a system of linear equations (see, Rasmussen and Williams, 2006)
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PALS confidence rectangle

C

Ry (2) = pn(z) — 820 (2)
RHUS

Confidence rectangles in PALS

= /1, and o2: posterior mean and variance of the GP model

= [3: coverage probability, n: number of data points
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Deemed Pareto optimal
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P, = {x e X[’ e X\ {2}, R, («') < R} (z)} (6)

» The pessimistic (R™) outcome of the green box is not dominated by the
optimistic (R~) outcome of any other box
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Non Pareto optimal

C
fffff ~« R:Ir
R
RHUS
N, ={r e X|32' e X\ {z}, R} (2)) < R, (z)} )

= The optimistic (R™) outcome of red box is dominated by the pessimistic
(R™) outcome of at least one other box
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PALS algorithm

= Classification is done Va € X at each iteration n < Npax
= Each point is classified as one of the following:

— P,: Deemed Pareto optimal
— N,,: Non Pareto optimal

- U, =X\ (P, UN,): Unclassified
= Sample the next point of evaluation

X1 = argmax [| R, (z) — R} ()]]2 (8)
z€P,UU,

where the uncertainty is maximum
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4 PALS with quantiles

= PALS as proposed by Barracosa et al. (2021) is not suitable when:
— Qol is not an expectation of the simulator outputs

= Several batches are simulated to estimate
_ Ravg _ E[Rbatch . (1 _ Pbatch _ptest)]
= Py = E[Pbatch 'ptcst]

= Qolis RMVS = g

= Basak et al. (2022) propose using quantiles to construct rectangles estimated
from the sample paths of GP
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Estimated Pareto front with PALS (with quantiles)

Unclassified (blue) and non Pareto optimal (red)
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5 Perspectives

= PALS with quantiles is still not able to classify well between

— P,: Deemed Pareto optimal

— U,,: Unclassified
= This is possible due to use of confidence rectangles for classification
— When the observations are too close in the objective space

= We propose Rectangle-free version of PALS (WIP!)
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Thank you for your attention!

Questions?
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