Integration of bounded monotonic functions: Revisiting the nonsequential case, with a focus on unbiased Monte Carlo (randomized) methods

Subhasish Basak^{1,2}, Julien Bect², Emmanuel Vazquez²

JdS 2022, Lyon, 15 Juin

¹ANSES, Maisons-Alfort, France

²Univ. Paris-Saclay, CNRS, CentraleSupeléc, L2S, Gif-sur-yvette, France

Problem statement

We are interested in approximating $\mathbb{E}(g(Y)) = \int g(y) P_Y(\mathrm{d}y)$

- $g: \mathbb{R} \to \mathbb{R}$ is monotonic and bounded
- P_Y is known, CDF F_Y of Y is continuous
- After scaling, the problem reduces to estimating

$$S(f) = \int_0^1 f(x) \mathrm{d}x,$$

where $f:[0,1] \rightarrow [0,1]$ is a non-decreasing function

• We consider a fixed sample-size setting where S(f) is estimated from n evaluations of f

Example: Quantitative Risk Assessment (QRA)

- Consider the following example in food safety
 - -Y: dose of pathogen STEC (Shiga Toxin producing Escherichia coli)
 - -g(Y): conditional risk of food-borne disease (Haemolytic Uremic Syndrome)
 - -g is an increasing function (complex numerical model)
- Goal: estimate $\mathbb{E}(g(Y))$

Contents

1 Literature review

- Two classes of methods (sequential or nonsequential):
 - deterministic
 - randomized
- Kiefer (1957) studied deterministic methods
 - Trapezoidal rule is the optimal worst-case deterministic algorithm

— It attains the lower bound for the maximal error: $\frac{1}{2\cdot(n+1)}$

- Novak (1992) studied unbiased randomized nonsequential methods
 - Unbiasedness comes at the price of a slight loss of performance w.r.t. the trapezoidal rule
- Novak (1992) also studied randomized sequential methods
 - He proposed a rate-optimal algorithm ($n^{-3/2}$ for the L_1 error)

- We focus on nonsequential unbiased Monte Carlo methods
- We provide a lower bound for the maximal Lp error
- We study methods based on uniform i.i.d sampling and statified sampling
- These unbiased methods can be used as building blocks for sequential methods

2 Non sequential randomized methods

• A nonsequential randomized method evaluates the function at n random points X_1, \ldots, X_n in [0,1] and approximates the integral S(f) using an estimator

$$\widehat{S}_n(f) = \varphi(X_1, f(X_1), \dots, X_n, f(X_n))$$
 (1)

• The worst-case L^p error of such a method over the class F is

$$e_p(\widehat{S}_n) = \sup_{f \in F} \mathbb{E}\left(\left|S(f) - \widehat{S}_n(f)\right|^p\right)^{1/p}$$
 (2)

F is the class of all non-decreasing functions $f:[0,1] \to [0,1]$

3 A lower bound for the L_p error

• We show that (extending Novak's result)

Theorem

For any nonsequential randomized method with sample size n,

$$e_p(\widehat{S}_n) \geq \left(\frac{1}{2}\right)^{2+1/p} \frac{1}{n}.$$

Corollary

$$\sup_{f \in F} \operatorname{Var} \left(\widehat{S}_n(f) \right) \ge \frac{1}{32n^2}.$$

4 Uniform i.i.d sampling

- We study unbiased nonsequential methods based on uniform i.i.d sampling
- $\widehat{S}_n(f)$ uses uniform i.i.d samples $\{X_1,X_2,\cdots,X_n\}$ from [0,1]
- We study two unbiased estimators
 - Simple Monte Carlo estimator
 - Control variate estimator

- Simple Monte Carlo estimator $\widehat{S}_n^{\mathrm{MC}}(f)$
 - The estimator is defined as

$$\widehat{S}_n^{\text{MC}} = \frac{1}{n} \sum_{i=1}^n f(X_i), \quad X_i \stackrel{iid}{\sim} U_{[0,1]}$$
 (3)

Using Popoviciu's inequality:

$$\left(e_2\left(\widehat{S}_n^{\mathrm{MC}}\right)\right)^2 = \max_{f \in F} \mathrm{Var}\left(\widehat{S}_n^{\mathrm{MC}}(f)\right) = \frac{1}{4n}.$$

- The maximal error is attained when f is a unit step function jumping at $x_0=1/2$

- Control variate estimator $\widehat{S}_n^{\mathrm{cv}}(f)$
 - We consider the control variate $\tilde{f}(X_i) = X_i$ and the estimator

$$\widehat{S}_n^{\text{cv}}(f) = \frac{1}{n} \sum_{i=1}^n \left(f(X_i) - \widetilde{f}(X_i) \right) + \frac{1}{2}.$$
 (4)

- Then,

$$\left(e_2\left(\widehat{S}_n^{\text{cv}}\right)\right)^2 = \max_{f \in F} \text{Var}\left(\widehat{S}_n^{\text{cv}}(f)\right) = \frac{1}{12n}.$$

- The maximal error is attained for any unit step function

5 Stratified sampling

- Unbiased randomized nonsequential methods based on stratified sampling
- [0,1] is divided into K strata, with the k-th stratum denoted by $I_k=[x_{k-1},x_k]$, $0=x_0< x_1<\ldots< x_{K-1}< x_K=1$
 - stratum size: $w_k = |x_k x_{k-1}|$
 - stratum budget: n_k
- $\widehat{S}_n(f)$ uses n_k uniformly distributed samples from I_k

- Stratified sampling estimator $\widehat{S}_n^{\mathrm{str}}(f)$
 - We consider K strata with sizes w_k and budgets n_k

$$\widehat{S}_{n}^{\text{str}}(f) = \sum_{k=1}^{K} w_{k} \cdot \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} f(X_{k,i}), \qquad (5)$$

- Then,

$$\left(e_2\left(\widehat{S}_n^{\mathrm{str}}\right)\right)^2 = \max_{f \in F} \operatorname{Var}\left(\widehat{S}_n^{\mathrm{str}}(f)\right) = \frac{1}{4} \max_k \frac{w_k^2}{n_k},$$

- The minimal value of the maximal error is $\frac{1}{4 \cdot n^2}$, attained with $K = \sum_k n_k$ and $w_k = n^{-1}$.

6 Discussion

Maximal error of nonsequential randomized methods

lower bound	$\widehat{S}_n^{\mathrm{str}}(f)$	$\widehat{S}_n^{\mathrm{cv}}(f)$	$\hat{S}_n^{\mathrm{MC}}(f)$	
$1/32 \cdot n^2$	$1/4 \cdot n^2$	$1/12 \cdot n$	$1/4 \cdot n$	

- The best-known variance upper bound
 - $n \leq 2$: Control variate estimator $\widehat{S}_n^{\mathrm{cv}}(f)$
 - $n \geq 3$: Stratified sampling estimator $\widehat{S}_n^{\rm str}(f)$

(The squared error for the deterministic biased trapezoidal rule is $\frac{1}{4(n+1)^2}$ \rightarrow outperforms randomized unbiased methods.)

Ratio of variance upper bound to lower bound

$$\begin{array}{|c|c|c|c|c|c|}\hline n = 1 & n = 2 & n \ge 3 \\ \hline 2.67 & 5.33 & 8 \\ \hline \end{array}$$

- We do not know at the moment if these results are optimal in the class of unbiased nonsequential methods
- The lower bound of variance is not known to be sharp
- Future work:
 - Multivariate case with partial monotonicity
 - Constructing sequential randomized methods

References

- [1] J. Kiefer. Optimum sequential search and approximation methods under minimum regularity assumptions. <u>Journal of the Society for Industrial and Applied Mathematics</u>, 5(3):105–136, 1957.
- [2] M. D. McKay, R. J. Beckman, and C. W. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2):239–245, 1979.
- [3] E. Novak. Quadrature formulas for monotone functions. <u>Proceedings of the American Mathematical Society</u>, 115(1):59–68, 1992.
- [4] T. Popoviciu. Sur I approximation des fonctions convexes d ordre superieur. Mathematica (Cluj), 10:49–54, 1935.

This work is part of the ArtiSaneFood project (grant number : ANR-18-PRIM-0015) which is part of the PRIMA program supported by the European Union.

Integration of bounded monotonic functions: Revisiting the nonsequential case, with a focus on unbiased Monte Carlo (randomized) methods

 ${\sf Subhasish\ Basak}^{1,2}$, Julien Bect 2 , Emmanuel Vazquez 2

JdS 2022, Lyon, 15 Juin

 1 ANSES, Maisons-Alfort, France 2 Univ. Paris-Saclay, CNRS, CentraleSupeléc, L2S, Gif-sur-yvette, Franc